M-MACBETH: A DECISION SUPPORT TOOL FOR MULTI-CRITERIA VALUE MEASUREMENT BASED ON QUALITATIVE VALUE JUDGEMENTS

Carlos A. Bana e Costa London School of Economics, OR Department Centre for Management Studies (CEG-IST)

OUTLINE

•Overview of Multi-Criteria Value Measurement:

- Measuring the relative value of options in each criterion: Numerical and non-numerical approaches (MACBETH)
- Criteria weighting procedures

Slides available in: alfa.ist.utl.pt/~cbana/

•Demonstration of M-MACBETH **Download Trial version in:** www.umh.ac.be/~smq/

Kaua'i Larry's Hawaiian problem: Ni'hau O'ahu Moloka'i At Hawaii after Lãna'i Marce Conference

He wants to choose 1 island

MAP

SANDWICH

ISCES

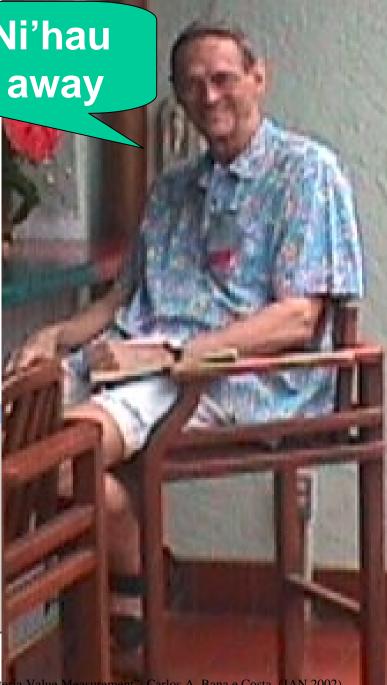
Hawai'i

Which-one?

KALIAT MOLOKAT LANAT HAWAAT

2

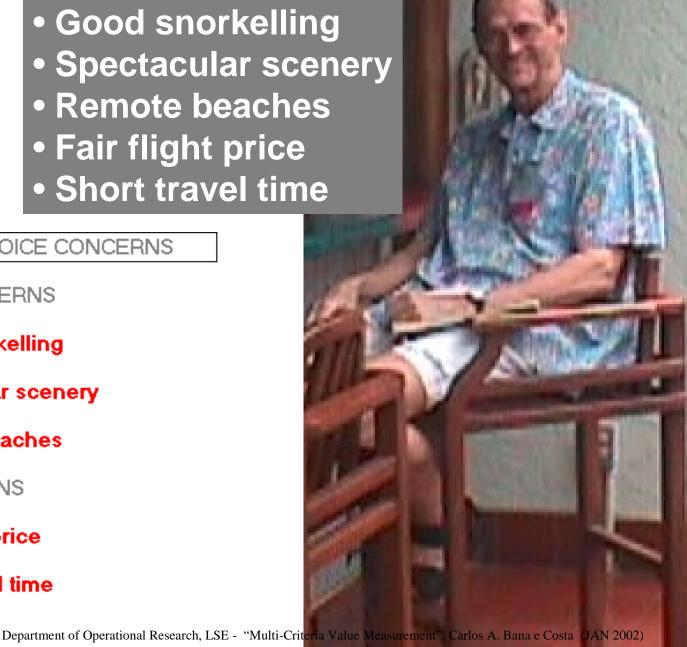
I am in the darkness! Can you help me, Department of Operational Research, LSE - "Multi-Criteria Value Measurement", Carl Carra 105?


Define options: Screening

Kauha'l & Ni'hau are too far away

New file

File nar	ne: Larry's Hawaiian island	choice
- Actior	IS	
	- Names	Short
1	Oahu	Oahu
2	Molokai	Molo
3	Lanai	Lana
4	Maui	Maui
5	Hawaii (the big island)	Big


Define criteria

Value tree

My key concerns are:

- Good snorkelling
- Spectacular scenery
- Remote beaches
- Fair flight price
- Short travel time

Evaluation framework: Additive value model

$$V(\mathbf{a}) - V(\mathbf{b}) = \sum_{j=1}^{n} k_j [v_j(\mathbf{a}) - v_j(\mathbf{b})]$$

With:
$$V(\mathbf{\bullet}) \text{ overall value of option } \mathbf{\bullet}$$

$$v_j(\mathbf{\bullet}) \text{ partial value (score)}$$

of option $\mathbf{\bullet}$

in terms of criterion j

k_j scaling constant (relative weight) of criterion j

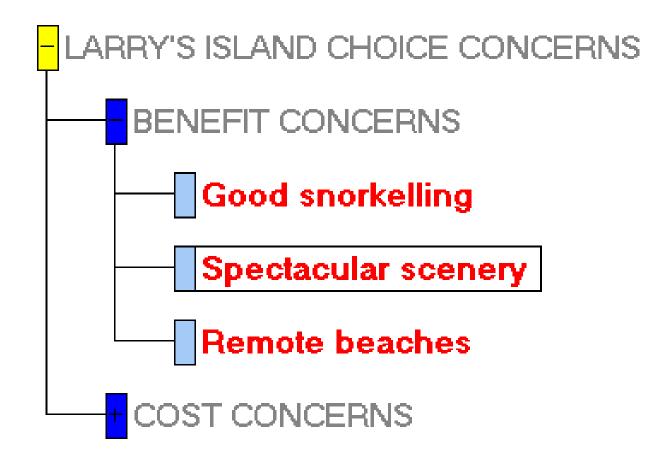
 $\begin{cases} v_j(best_j) = 100, \forall j \\ v_j(worst_j) = 0, \forall j \\ V(best allover) = 100 \\ V(worst allover) = 0 \end{cases}$ $\sum_{j=1}^{j} k_j = 1$ and $k_j > 0$ (j = 1,...,n)

Scoring the options against each criterion:

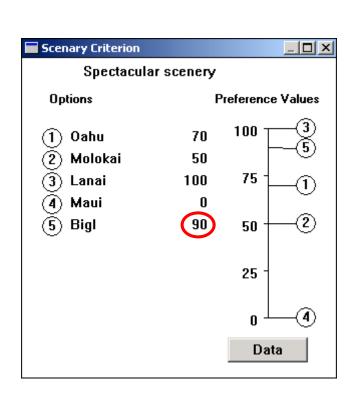
Techniques for cardinal (interval) value measurement

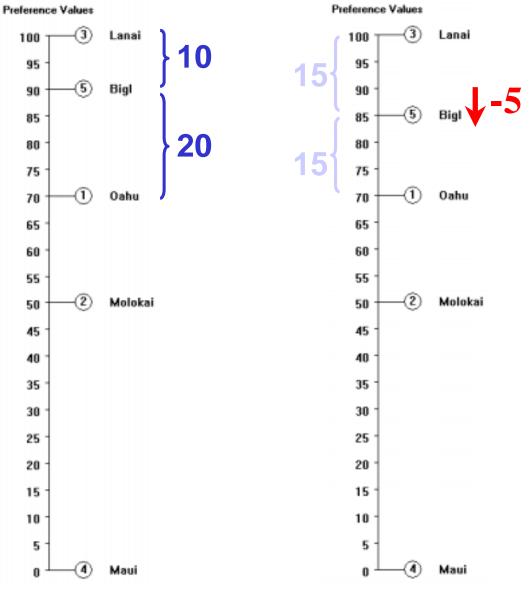
Numerical approaches

"Direct rating,


ratio estimation, category estimation, curve drawing

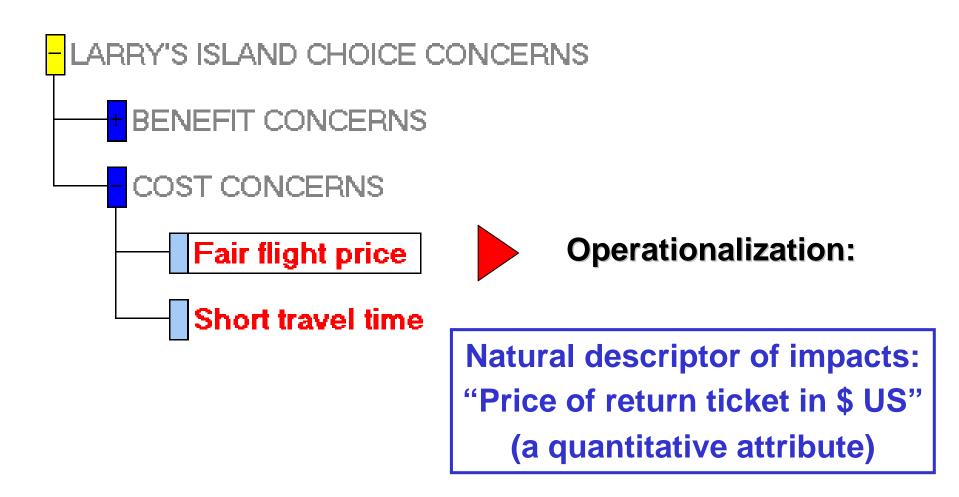
are versions of numerical estimation methods


in which respondents are presented with some anchored scale and asked to rate or otherwise estimate numerically the attractiveness of the stimulus relative to the anchors."


(von Winterfeldt & Edwards, 1986)

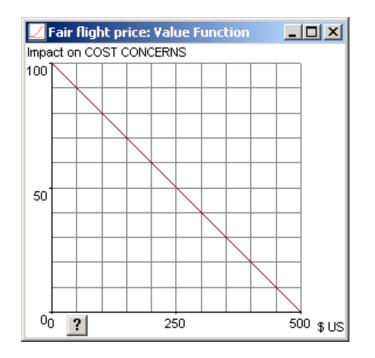
Example 1: Larry's "Spectacular scenery" concern

Direct Rating

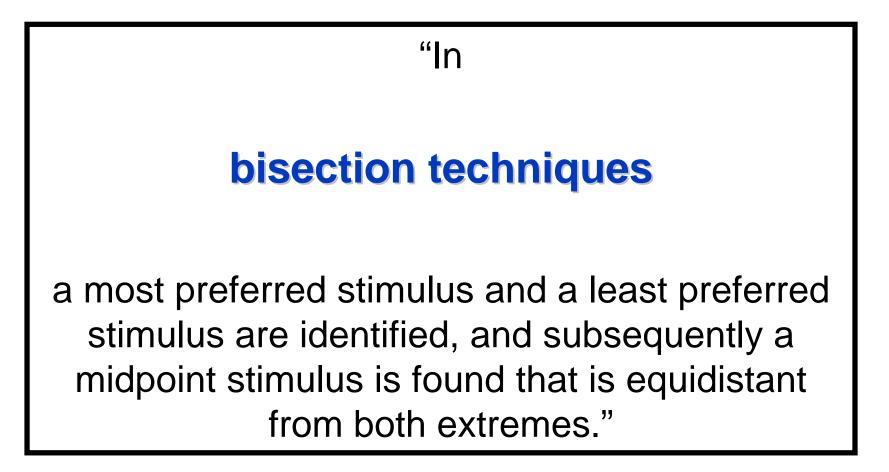


$\begin{bmatrix} v(Bi) - v(Oa) \end{bmatrix} = 2.[v(La) - v(Bi)] \quad (90-70) = 2.(100-90) \\ \begin{bmatrix} v(Bi) - v(Oa) \end{bmatrix} = \begin{bmatrix} v(La) - v(Bi) \end{bmatrix} \quad (85-70) = (100-85) \end{bmatrix}$

Building (interval) value functions


a value function enables to transform impacts into scores

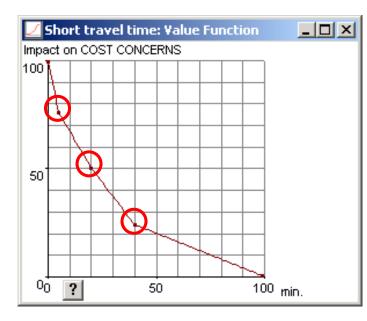
Example 2: Larry's "Fair flight price" concern


Linear value function: Proportional scores

Common when the concern has a natural numerical descriptor


$$v_{\$}(?) = \frac{? - \text{least attractive cost}}{\text{most attractive cost} - \text{least attractive cost}} \times 100$$

Building (interval) value functions: "Bisection" or "mid-point splitting" approach



(von Winterfeldt & Edwards, 1986)

Example 3: Larry's "Short travel time" concern

Non-linear value function: Bisection technique

Find '? min.' so that the difference in attractiveness between '0 min.' and '? min.' is equal to the difference in attractiveness between '? min.' and '100 min.'

v(0 min.) - v(? min.) = v(? min.) - v(100 min.)

100 - v(20 min.) = v(20 min.) - 0v(20 min.) = 50 Similar questions to find the midpoints 25 and 75

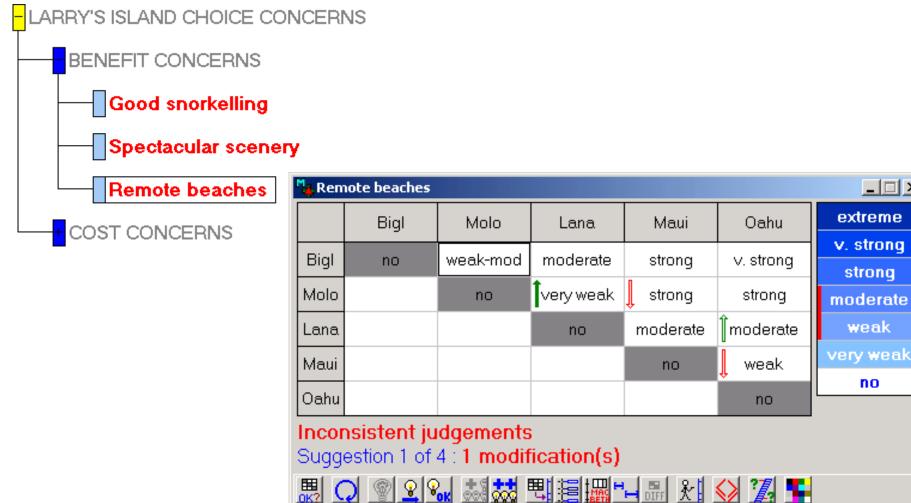
Piecewise linear value function or curve fitting

Non-numerical approaches: MACBETH

What to do when evaluators do not feel comfortable in directly scoring the options?

Use MACBETH (Measuring Attractiveness by a Categorical Based Evaluation Technique)

An interactive approach to guide the construction of an interval value scale, based on qualitative value judgments


How does it work?

MACBETH uses a simple question-answer protocol which involves only two options in each question: Ask the evaluator to pair-wise compare options by given a *qualitative* judgement of the difference in attractiveness between each two options

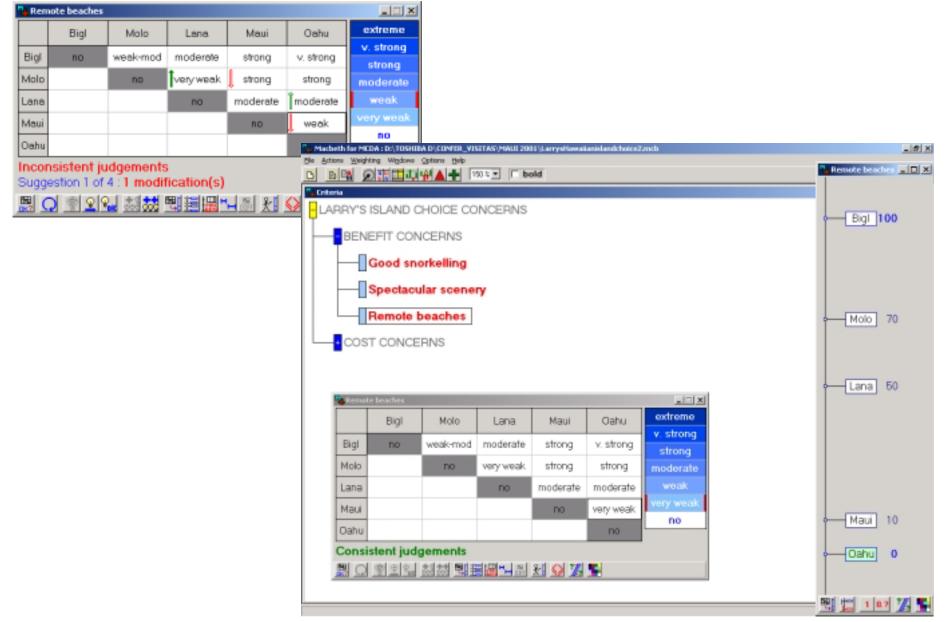
> For x and y such that x is preferred to y, the difference in attractiveness between x and y is:

Example 4: Larry's "Remote beaches" concern

Department of Operational Research, LSE - "Multi-Criteria Value Measurement", Carlos A. Bana e Costa (JAN 2002)

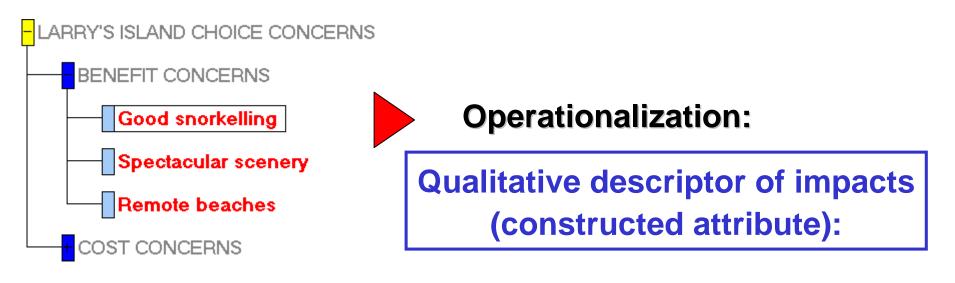
_ 🗆 🗵

extreme


v. strong

strong

weak


no.

Interactive discussion of inconsistency

Qualitative descriptor

Example 5: Larry's "Good snorkelling" concern

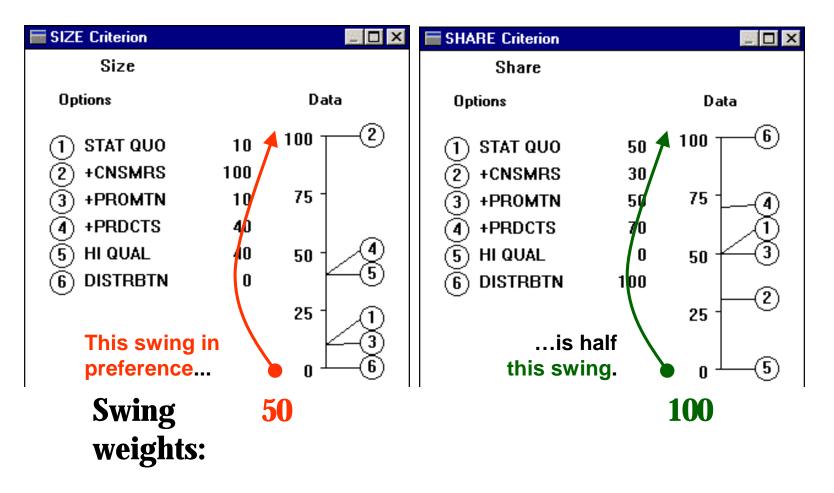
- [Descripto	prilevels :	
	- +	Names	Short
	1	Excellent snorkelling nearby hotel	ExcNear
	2	Good snorkelling nearby hotel	GoodNear
	3	Excellent snorkelling, but out-of-the-way	ExcOut
	4	Good snorkelling but out-of-the-way	GoodOut

Preference scale: MACBETH

		VISITAS\MAUI 2001	\LarrysHawaiianisla	indchoice3		
	indows Options Hel	p 200 % ▼	d			
eria						Good snorkelling
ARRY'S ISLA	ND CHOICE	CONCERNS				
- BENEFIT	CONCERNS					ExcNear
Goo	d snorkelling					
Spee	ctacular sce	nery				
Rem	ote beache	5				
	NCERNS					
-						GoodNea
Good snorkelling						
	ExcNear	GoodNear	ExcOut	GoodOut	Current scale	
ExcNear	no	strong	strg-vstr	extreme	100.00	ExcOut
GoodNear		no	weak	strong	60.00	
ExcOut			no	strong	40.00	
GoodOut				no	0.00	
Consiste	ent judge	ments				GoodOu
			🛇 🗷 🗣			
						백 📁 1 0.2 7/

Weighting procedures:

TRADEOFF PROCEDURE (Keeney & Raiffa, 1976)


SWING WEIGHTING PROCEDURE (von Winterfeldt & Edwards, 1986)

MACBETH

(Bana e Costa & Vansnick, 1997, 1999)

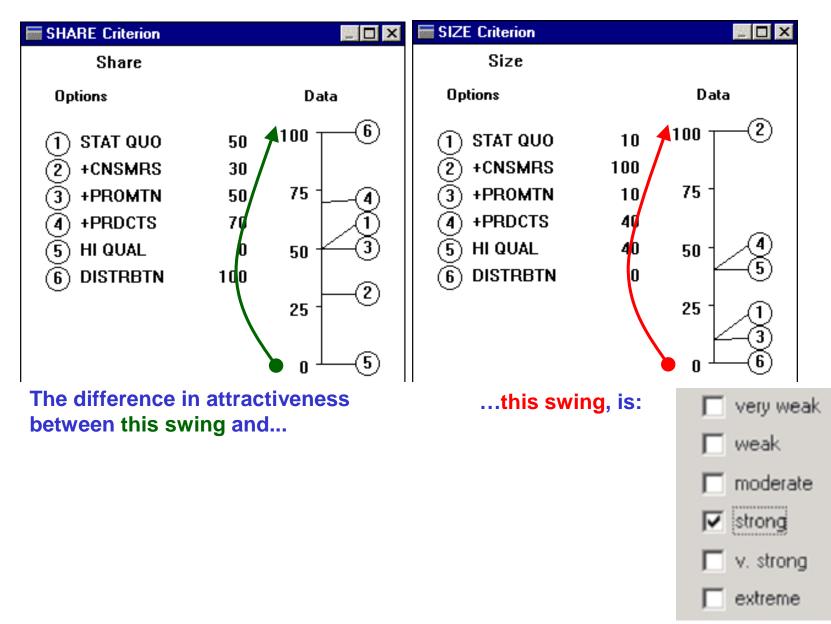
Adapted from Prof. Larry Phillips' week-2 lecture

Swing weighting procedure

"How big is the difference, and how much do you care about it?"

SWING WEIGHTING PROCEDURE

The swing procedure starts from an alternative with the worst impacts in all the criteria The evaluator is allowed to change from worst impact to best in one PV.

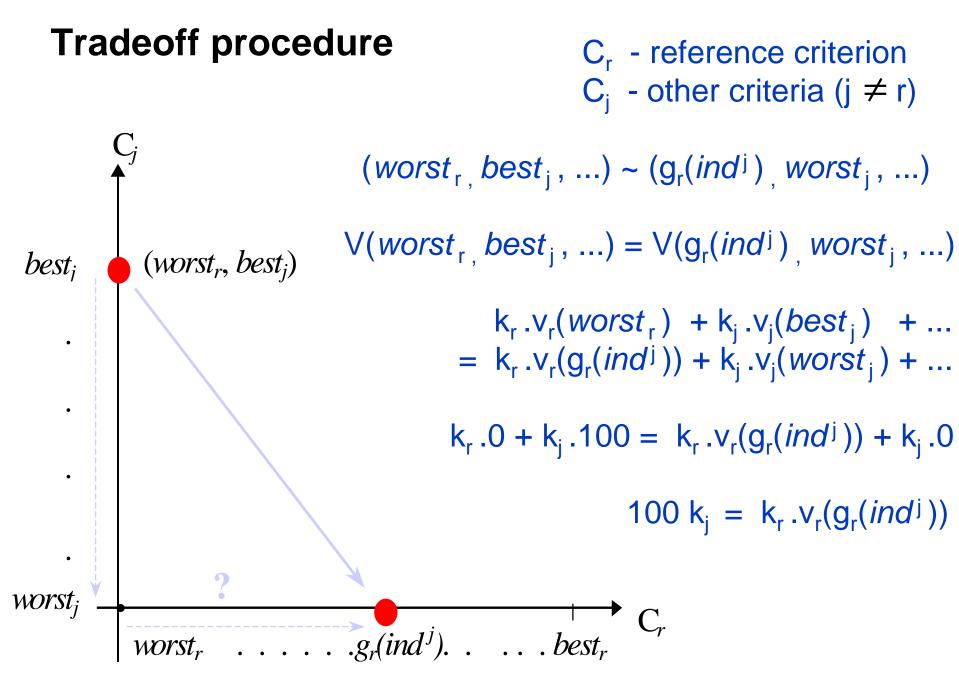

He or she is asked which 'swing'' from worst to the best impact would result in the largest,
second largest, etc., improvement of global attractiveness. The criterion with the most
preferred swing is assigned 100 points.Image: Comparison of the largest impact would result in the largest impact would result in the largest,
end the most

The magnitudes of all other swings are expressed as percentages of the largest swing. The derived percentages are the raw weights that are normalized to yield final weights. (Adapted from Weber & Borcherding, 1993.)

													\vdash		
	C	21		C2		C	3		C4	ļ.	(25		C	:6
	PHIS	ICAL	CU	U LTURAI	L	DELA	Y IN		TENA	NT	AC	ΓΙΟΝ		PL. A	CTION
	INJU	RIES	1	ALUES		ACT	ION	M	OTIVA	TION	AR	EAS	Π	AR	EAS
BEST															
PLAUS IBLE	IMIN	IENT	CL	ASSIFIE	D	2	0		S TR C	ONG	ALL	THE	Í	IN A	PL.
IMPACT	RIS K		B	UILDING	DING	YEA	ARS	MOTIVATIO		ATION	BUII	LDING		AREA	
		A										A			A
						 					D			<u> </u>	
			OR			OR		OR		OR				OR	
													$\left \right $		
WORS T															
PLAUS IBLE	ABSI	ENCE	N	ORMAL		0	0		NORMAL		ONE		IT	OUT OF	
IMPACT	OF 1	R IS K	B	UILDING		YEA	RS	Гм	OTIV	ATION	FI	LAT	П	PL A	REA

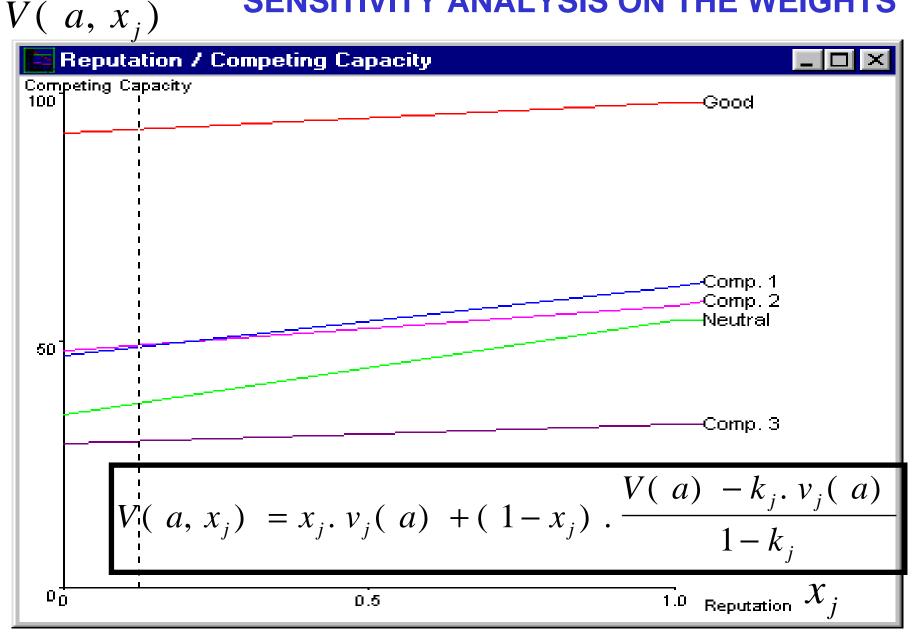
	C6	C1	C5	C2	C4	C3
	IN A P L.					
100	AREAS	IMINENT				
		R IS K				
			ALL THE			
			BUILDING			
				CLAS S IFIED	STRONG	
		_	_	BUILDING	MOTIVATION	
						20
		_				YEARS
	OUT OF PL. AREAS	ABSENCE OF RIS K	ONE FLAT	NORMAL BUILDING	NOR MAL MOTIVATION	0 YEARS
%	100	90	70	50	50	30
Swing						
weights	0,256	0,231	0,18	0,128	0,128	0,077

MACBETH weighting procedure


Macbeth : C:\Macbeth\multi\Offi_dom.mcb le									- 8
5 🖻 🕰 🙍 📰 🛄 📥 🕂 125 % 💌 🗍	□ bold	Evaluation	п сору						
Points of vue									_ 0 ;
OFFICE Turnover	clients								
Visibility	A OFFICE	: judgemente							
-Working Conditions	?	R-close	R-visib	R-comf	R-size	R-image	R-park	Neutral	Current scale
Size	R-close	no	weak	moderate	moderate	moderate	strong	positive	33.33
Comfort	R-visib		no	weak.	weak	moderate	moderate	positive	24.24
Car parking	R-comf			no	weak	weak	moderate	positive	18.18
OFFICE : histogram	R-size				no	veryweak	weak	positive	12.12
33,33	R-image					no	weak	positive	9.09
	R-park						no	positive	3.03
24,24	Neutral							no	0.00
	Consiste	ent judge	ments						
R-close R-comf R-size R-park R-close R-comf R-size R-park		2)	over any one	all at two	tracti swing ore at	ivene gs wi	ss be ith th	nce i etwee he firs an th	n st

The tradeoff procedure has the strongest theoretical foundation (Keeney and Raiffa, 1976). The key idea is to compare two options described on two criteria (for the remaining criteria both options have identical impacts). One option has the best impact on the first and the worst impact on the second criterion, the other has the worst on the first and the best on the second criterion. By choosing the preferred option out of the two the decision-maker decides on the "more important" criterion.

The critical step is the adjustment of the impact level in order to yield indifference between the two options. This is typically done by either worsening the chosen option in the best impact or improving the non-chosen option in the worst impact.


Such differences have to be elicited for the n - 1 meaningfully selected pairs of options. If the local value functions are known, numerical values for the scaling constants can be derived.

(Weber & Borcherding, 1993)

Department of Operational Research, LSE - "Multi-Criteria Value Measurement", Carlos A. Bana e Costa (JAN 2002)

SENSITIVITY ANALYSIS ON THE WEIGHTS

